SCAN: Selective Contrastive Learning Against
Noisy Data for Acoustic Anomaly Detection

Zhaoyi Liu, Yuanbo Hou, Wenwu Wang Senior Member, IEEE, Sam Michiels and Danny Hughes

Abstract—Acoustic Anomaly Detection (AAD) has gained
significant attention for the detection of suspicious activities
or faults. Contrastive learning-based unsupervised AAD has
outperformed traditional models on academic datasets, however,
its model training is predominantly based on datasets containing
only normal samples. In real industrial settings, a dataset of
normal samples can still be corrupted by abnormal samples.
Handling such noisy data is a crucial challenge, yet it remains
largely unsolved. To address this issue, this paper proposes a
Selective Contrastive learning framework Against Noisy data
(SCAN) to mitigate the adverse effects of training the AAD model
with anomaly-corrupted data. Specifically, SCAN progressively
constructs confidence sample pairs based on the Mahalanobis
distance, which is derived from the geometric median. These
selected pairs are then integrated into the contrastive learning
framework to enhance representation learning and model ro-
bustness. Extensive experiments under varying levels of label
noise (i.e., the proportion of mislabeled abnormal samples in
training data) demonstrate that SCAN outperforms state-of-the-
art (SOTA) AAD methods on the real-world industrial datasets
DCASE2022 and DCASE2024 Task2.

Index Terms—A coustic anomaly detection, unsupervised learn-
ing, contrastive learning, noisy data, confident pairs

I. INTRODUCTION

Faults and failures in industrial machinery can significantly
decrease its operational efficiency and product quality [1][2].
Identifying anomalies solely from operational machine sounds
without requiring annotated data is known as unsupervised
Acoustic Anomaly Detection (AAD) [3[][4] and has gained
increasing attention in both academic research and industrial
applications. Anomalous acoustic signals may indicate system
malfunctions or security threats, and early detection helps
prevent operational failures and mitigate risks [5][6].

Due to the high cost of collecting comprehensive data for
all possible anomalous behaviours, AAD systems are often
developed using only normal data within an unsupervised
learning framework [7]. Most previous unsupervised AAD
methods rely on a well-defined dataset that contains only
normal samples to establish a standard distribution, which
is then utilized to determine whether a given test sample is
normal or not [8]-[10]. However, excessive reliance on such
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data is risky. If the dataset of normal samples is contaminated
by abnormal samples, the decision boundaries given by these
models become unreliable, leading to a potential performance
degradation in anomaly detection. Thus, the performance
of previous mainstream methods is sensitive to noisy data
(LLf12].

In this paper, the term noise refers to label noise, mean-
ing abnormal samples inadvertently present in training data
assumed to be normal. In real-world industrial settings, such
contamination is often unavoidable due to human misjudgment
or distributional shifts over time. This reality challenges the
clean-data assumption and affects the practical reliability of
existing methods. While prior studies have effectively ad-
dressed data corruption from sensor or environmental noise
[13]-[15]], the specific challenge of label noise within the unsu-
pervised AAD context remains largely unexplored. To address
this critical gap, we propose a first fully unsupervised AAD
framework that explicitly accounts for label noise without
relying on manual data filtration. This design improves the
robustness and practicality of anomaly detection in industrial
quality inspection, enabling rapid deployment across diverse
production lines with minimal human intervention.

Several studies have explored the effectiveness of Con-
trastive Learning (CL) for AAD, demonstrating its potential to
substantially improve latent representations and enhance the
accuracy of anomaly detection on benchmark datasets [[10],
[16]-[18]]. However, such methods have not considered the
impact of training the AAD model with normal data corrupted
by anomalous samples. To fill this gap, we introduce a novel
Selective Contrastive learning framework Against Noisy data
(SCAN), by designing a selective process to identify the
high-confidence samples (i.e., the normal samples) from the
corrupted dataset and utilizing them during training.

More specifically, at each training epoch, we compute
anomaly scores using the Mahalanobis distance [19]-[21],
leveraging the geometric median to improve the robustness of
the model. Based on these scores, confident pairs are identified
from the dataset that may have been corrupted by abnormal
samples using a thresholding strategy based on the Chi-
squared distribution. Then, we utilize these pairs to facilitate
the learning of robust latent representations within the CL
framework, thereby reducing the adverse impact of abnormal
samples on the AAD model training. We evaluated SCAN
on DCASE2022 and DCASE2024 Task2 datasets. Extensive
experiments under different levels of label noise demonstrate
that the proposed method effectively handles AAD in the
presence of partially incorrect or noisy training labels.
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Fig. 1: An overview of SCAN. During the training, SCAN iteratively
selects confident pairs to mitigate noisy data. At inference, each test
sample’s anomaly score is the Mahalanobis distance between its latent
representation and the selected confident training samples.

II. PROPOSED METHOD

The proposed SCAN is shown in Fig. [I where a novel
selective CL framework is designed to address the adverse
impact of noisy data on AAD performance. In this method,
the geometric median-based Mahalanobis distance is used
to provide a robust reference against variations in the data
distribution [22]][23]]. In training, SCAN progressively selects
a set of confident pairs from the training set S, which helps
mitigate the adverse impact of noisy data at each epoch,
thereby enhancing the learning of robust acoustic represen-
tations. During inference, the Mahalanobis distances are used
to derive the anomaly scores for the test samples.

A. Contrastive Latent Acoustic Representation Learning

The CL framework is used to derive acoustic representations
from unlabeled data by creating multiple variations of an
acoustic clip through data augmentation [[17], [24]]. Conse-
quently, the proposed SCAN firstly augments each acoustic
clip with five transformations operating in both the time and
frequency domains, as described in [16].

Let x; be the k-th audio clip, randomly selected from
a training mini-batch of N raw audio clips. In the data
augmentation process, we define C as the set of possible
augmentation operators. For each acoustic clip x;, we ran-
domly draw two operators from C, which we denote as ¢! and
c?. These are then applied to produce a pair of augmented
views: X3, , = c'(xx) and x3, = c*(xx). Following the
augmentation step, each augmented view is converted into a
two-dimensional mel spectrogram, denoted as X, € RF*T.
Here, the index n € {1,--- ,2N} represents elements in the
augmented view sets.

A classical unsupervised CL framework [25]] is subsequently
employed to enhance acoustic representation learning by max-
imizing the similarity between its augmented versions from
different perspectives while minimizing the similarity between
distinct acoustic clips. Following the SimCLR [<25], during
SCAN training, we apply two stochastic augmentations to
the NN acoustic clips within a mini-batch, generating 2NN
spectrograms. These spectrograms are then fed into Siamese

encoders [26], denoted as £(-), which transform the input
into lower-dimensional representations: z, = £(X,). Note
that £(-) comprises two identical neural networks that share
weights. To further enhance the representations, a projection
layer ¢g(-) maps the latent representation z,, into a subspace to
compute the sample-wise contrastive loss. The output of the
projection head is represented as h,, = g(z,).

Each acoustic clip’s augmented versions are considered
positive pairs, while all other clips in the mini-batch are treated
as negative pairs. The contrastive loss function promotes the
alignment of latent representations for positive pairs while
enforcing separation among negative pairs. The subscript (4, j)
is solely used to index positive pair where ¢ = 2k — 1 and

= 2k for k € {1,---, N} within the current mini-batch.
Then, the loss function for a positive pair (i, 7) is

exp(siml(i, j)/1) 0
2N . . ’

Zn:l l[”#i]exp<szm(l7 n)/t)

where 1,4, is an indicator function, ¢ denotes a temperature

parameter, and sim(i,j) = (h; - h;)/(||/h;||||h;||) represents

cosine similarity among hidden acoustic representation. The

final loss L¢p for the entire mini-batch is the average of

this term computed symmetrically across all N positive pairs,
defined as [27]:

Lcp = 22\121(5(21@71,21@) + L(2k,26-1)) /2N. 2

E(i,j) = —lOg

B. Selecting Confident Pairs

To enhance robustness in contrastive learning under noisy
label conditions, our approach progressively selects more con-
fident pairs S out of noisy pairs to perform unsupervised CL.
To achieve this, we estimate the anomaly scores using the Ma-
halanobis distance [19]-[21]], based on the geometric median
[22]1]23]], which provides a robust and stable reference under
distributional variation. We further introduce a thresholding
strategy based on the Chi-squared distribution to identify
noisy clips, by computing adaptive confidence thresholds at
each epoch. The threshold increases progressively using a
logarithmic schedule, starting conservatively and adjusted as
representation learning improves.

Specifically, in each epoch e, for every mini-batch of N
acoustic clips, we form a temporary set of 2N latent repre-
sentations Z(¢) = {zgf‘)}%]il. This batch-specific set is then
used to compute anomaly scores and select confident pairs for
that training step. Here, d denotes the dimension of the latent
representation. Then, the geometric median p(®) € R of Z(¢)

is calculated as:
> llz—vl, (3)

p'® = arg min
c d
z € Z(e)

where y is a candidate center in RY. Here, Weiszfeld’s ap-
proximation [28]] is used to estimate the geometric median.
The anomaly score 57(16) of a spectrogram X,, at epoch e
is computed using the Mahalanobis distance, based on its
corresponding latent representation zgf), as follows:

s = (&) - pOT(ED) @) ), @

Nz -



where (¢) is the covariance of the training data at epoch e.

Since the true Chi-squared distribution [29] can be ap-
proximated by Mahalanobis distances, we adopt the Chi-
squared-based threshold to detect noise. In particular, given
a confidence level o, the upper threshold ©(¢) is determined
from the Chi-squared distribution Xf,, where p is the dimension
of z,, equivalent to d, as follows:

0 = y2(1-a). (5)

The acoustic clip with anomaly scores ssf) exceeding a

threshold ©(¢) are treated as noisy and excluded from gradient
propagation during epoch e to reduce the influence of uncertain
or potentially mislabeled data.

During the early stages of training, the CL model may have
limited capability to learn robust latent representations, leading
to less reliable anomaly detection based solely on Mahalanobis
distance scores. To address this, we gradually adjust the
confidence level for detecting noise during training, ensuring
that the threshold value steadily approaches its upper limit as
training progresses, by employing a logarithmic function as
the balancing factor as follows,

0l =0 x (1-1/log(e +¢)), ©

where € is a small constant for numerical stability.

Then, acoustic clips with scores exceeding @1(,6) are con-
sidered noisy (i.e., potentially anomalous) and excluded from
training. Only acoustic clips with scores below the threshold
are retained, and the contrastive loss is computed using pairs
where both scores fall below 6]()6) to ensure robust represen-
tation learning. The set of confident pairs is denoted as S:

S:={ (2, z§-e)) | Vv e {i,j}, score(z{?)) < O} (7)

To mitigate the impact of noisy data, the contrastive loss
is computed only on selected confident pairs in S. That is, in
Eq. [1] and Eq. [2 the loss calculation is restricted entirely to
the set of confident pairs S to reduce the influence of potential
noisy data. During inference, the Mahalanobis distance as
in Eq. [] is computed, where the geometric median g and
the covariance X are estimated from the final epochs using
the selected confident training samples. This distance serves
as the anomaly score, measuring the deviation of the latent
representation of the query sample z.y € R? from the
pre-estimated geometric median, which is compared to the
threshold learned during training to determine whether the
sample is anomalous.

III. EXPERIMENTS
A. Experimental Setting

1) Dataset: We evaluate SCAN on industrial datasets from
DCASE2022 [3]] and DCASE2024 Task2 [4], using real-world
machine types to assess robustness under diverse conditions.
The datasets differ as follows: (a) DCASE2022 Task2 in-
cludes five machine types—bearing, fan, gearbox, slider, and
valve—with domain shift between training and test data. Each
machine type has 3000 training samples in the source domain
and only 30 in the target domain, with variation caused by
changes in operator settings or environmental factors. (b)

DCASE2024 Task2 adds complexity by introducing unseen
machine types in the test set, including 3D printer, air com-
pressor, brushless motor, hair dryer, hovering drone, robotic
arm, scanner, and toothbrush. Each unseen machine type has
200 test samples. Despite these differences, both datasets
aim to distinguish normal from abnormal acoustic samples,
regardless of domain variations or machine types.

2) Noisy Data Settings: The number of normal samples is
the same as that in the noiseless setting. By injecting varying
proportions of anomalous samples, we generate noisy datasets
labelled as ‘“noise-r%,’ where r% denotes the noise ratio.
Anomalous samples, randomly selected from the DCASE2022
Task?2 test set, are added to the normal training set as noise.
These injected anomalies remain in the test set, creating label
conflicts where they are treated as normal during training but
anomalous during inference. This creates a more challenging
yet realistic AAD benchmark under noisy conditions. Due to
the limited number of abnormal samples in DCASE2022, the
noise ratio is capped at 8% in our experiments.

3) Implementation Details: The input feature is the mel
spectrogram, computed using a Hann window of length 2048
with 50% overlap and 128 mel filter banks. The encoder £(-)
is based on the ResNet-18 architecture [30], generating a 512-
dimensional linear output vector. To further refine the latent
space, a projection head, implemented as a Multi-Layer Per-
ceptron (MLP), consists of a 512-unit hidden layer followed
by a 128-unit output layer, producing the final representation
vectors. The confidence level is set to @ = 0.05, while
the temperature parameter ¢ is empirically chosen as 0.007.
Optimization is performed using the AdamW optimizer [31]]
with a batch size of 128. The initial learning rate is selected
from four logarithmically spaced values between 0.0005 and
0.01 and is adjusted using cosine annealing over 100 training
epochs. The model is trained for a total of 400 epochs. Each
experiment was repeated 10 times.

B. Results and Analysis

The SCAN-based model is trained on DCASE2022 Task2
training data, sharing the same machine types as DCASE2024
Task?2 training set. We compare SCAN with fully unsupervised
classic AAD methods and SOTA CL-based approaches without
relying on meta-information like machine ID. Classic methods
include AE-AAD [3], MobileNetV2 [4]], and IDNN [32],
alongside CLF-AIAD [|16]] and AADCL [17]] as advanced CL-
based frameworks. Additionally, we benchmark SCAN against
the top five AUC-ranked methods from DCASE2022 Task2
[33]-[37] and DCASE2024 Task2 [38]-[42]], adopting their
official leaderboard AUC scores as the leading baseline results.

1) Robustness with Varying Noise Ratios: To analyze how
different methods respond to increasing noise levels, we
conduct experiments on DCASE2022 Task2 using varying
noise ratios {0, 2, 4, 6, 8}(%), following the settings in
Section As shown in Fig. 2] fully unsupervised AAD
methods without noise handling strategies exhibit a signifi-
cant decrease in performance as the noise ratio increases. In
contrast, the proposed SCAN demonstrates greater robustness,
consistently achieving the most robust performance across
varying noise levels and different domains. Furthermore,



TABLE I: Comparison between presented and 5 top-performing systems in Task2 of DCASE2022 and DCASE2024.

Method | AR Baselines‘ Top-k AUCs Proposed SCANs AUCs
| B | Top-1 Top-2 Top-3 Top-4 Top-5|SCAN-0% SCAN-2% SCAN-4% SCAN-6% SCAN-8%
DCASE2022 61.5 77.13 74.87 73.72 69.7 68.22 79.78 78.56 78.22 77.86 77.02
DCASE2024 60.6 7398 72.81 69.04 61.35 61.09| 74.53 74.11 73.52 72.98 71.63
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Fig. 2: Comparison of performance trends on source and target domains in
the DCASE 2022 for the proposed SCAN, baselines, and advanced methods
with increasing noise ratios (0% to 8%).

(ii) CLF-AIAD (iii) Proposed SCAN
Fig. 3: t-SNE visualization of extracted features for bearing test data

in the DCASE 2022 under 8% noise.

(i) AE-AAD

CL-based methods (proposed SCAN, AADCL, and CLF-
AIAD) exhibit stronger stability and higher performance than
reconstruction-based approaches (AE-AAD and IDNN), which
are more sensitive to input noisy data. However, as the noise
level increases, the performance gap between the proposed
SCAN and SOTA CL-based methods (AADCL and CLF-
AIAD) becomes more noticeable, demonstrating the stronger
resistance of SCAN against noise. Additionally, methods with-
out noise-mitigation strategies suffer more severe performance
degradation in the target domain as the noise level increases.
This issue is particularly evident in real-world industrial envi-
ronments, where external factors such as temperature fluctua-
tions, varying loads, and operational inconsistencies further
amplify the discrepancies in abnormality labels or domain
alignments between initial and final calibrations. Building on
this trend analysis, we further examine the feature extraction
capabilities of AE-AAD, CLF-AIAD, and the proposed SCAN
using t-SNE for clustering and visualization, as shown in
Fig. B] The proposed SCAN produces more distinct features,
indicating its superior ability to capture latent representations
under noisy data conditions.

2) Comparison to Top-performing Systems: The SCAN
framework is evaluated against five top-performing systems
from the DCASE2022 and DCASE2024 Challenges. In Ta-
ble [ SCAN consistently outperforms baselines and top sys-
tems with higher AUC scores across all noise levels, even
without noise (SCAN-0%). This demonstrates the benefits of
selecting confident pairs to improve the CL performance. In
DCASE2024, when the noise ratio exceeds 8%, the perfor-
mance gap between SCAN and the top-1 system remains
small, demonstrating its strong robustness even when it is

4%
Noise Ratio
Compared Methods

BN SCAN w/o selecting [ SCAN w/o balance factor ~ Em@ SCAN w/ mean [ proposed SCAN

Fig. 4: Comparison of performance trends on source and target
domains in the DCASE 2022 for the proposed SCAN and its
variations for increasing noise ratios (0% to 8%).

TABLE II: Comparison of SCAN variants with 8% noise.

Dataset DCASE 2022 DCASE 2024
SCAN w/o Selecting 73.19+1.09 69.97+1.11
SCAN w/o Balance Factor 73.66+1.10 70.14£1.05
SCAN w/ Mean 75.14+1.24 71.11+£1.16
Proposed SCAN 77.02+£0.77 71.63+0.86

trained on noisy data.

3) Ablation Study: To evaluate the effectiveness of the pro-
posed method, ablation experiments were conducted on three
SCAN variations: (1) SCAN w/o selecting, which removes
the selecting confident pairs module; (2) SCAN w/o balance
factor, which applies the final threshold value in Eq. [3 at
the start of training; and (3) SCAN w/ mean, which uses the
mean vector instead of the geometric median for Mahalanobis
distance calculation. Fig. ] and Table [I] present the AUC
results of SCAN and its variations for different noise ratios
and different industrial challenge datasets under a high noise
level, respectively. First, SCAN w/o selecting experiences a
sharp performance decrease as noise increases, underscoring
the importance of noise mitigation strategies. Second, SCAN
without balance factor further deteriorates under high noise
conditions and across different datasets, emphasizing the need
for progressively increasing threshold confidence to enhance
acoustic representation learning and model stability. Lastly,
SCAN with mean underperforms (Fig. ) the geometric me-
dian, which offers better robustness in real-world scenarios.

IV. CONCLUSIONS

To handle noisy data in real-world anomaly detection,
we introduced SCAN, a selective CL framework. SCAN
effectively identifies potential noise through the Mahalanobis
distance with the geometric median, enabling a progressive
construction of confident pairs to learn robust latent represen-
tations within the CL framework. Our extensive experiments
on multiple industrial datasets under noisy conditions have
demonstrated the SOTA performance of SCAN. A potential
future work is to enhance the framework’s scalability.
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